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Abstract. In the framework of causal perturbation theory by Epstein and Glaser the process of
renormalization is precisely equivalent to the extension of time-ordered distributions to coincident
points. This is achieved by a modified Taylor subtraction on the corresponding test functions. I show
that the pullback of this operation to the distributions yields expressions known from differential
renormalization. The subtraction is equivalent to BPHZ subtraction in momentum space. Some
examples from Euclidean scalar field theory in flat and curved spacetime will be presented.

1. Introduction

Calculations in perturbative QFT are performed primarily in momentum space. The
computation of a given contribution to theS-matrix is performed by writing down Feynman
rules and applying a certain choice of renormalization scheme to the resulting expression. For
a reasonable renormalization scheme it should be proved to work for all orders and so produce
a finiteS-matrix as, for example, in the case of BPHZ renormalization.

But today we consider the principle of locality to be of special importance, and hence
a local formulation of perturbation theory should exist. This has been elaborated upon by
Epstein and Glaser [13] following earlier ideas of Bogoliubov [2]. Their approach is called
causal perturbation theory (CPT). Based on a set of axioms they constructed theS-matrix
as a formal power series inductively. The process of renormalization occurs only once in
every step. All lower-order contributions are already renormalized. This corresponds to the
determination of all divergent subgraphs in the traditional approach and simplifies the proof
of the construction to all orders. The main concept on which CPT is based is its formulation
completely in configuration space. In the 1970s there were few applications of this, apart
from [1, 8]. This may be due to the fact that Epstein and Glaser used rigorous functional
analysis, in which renormalization is defined by an appropriate subtraction on test functions,
whereas physicists are used to working with distributions in an integral kernel representation.

Later, Scharfet al applied CPT to QED (see [24] and references therein) and to non-
Abelian gauge theories [9–12]. But their perturbative calculations were still performed in
momentum space.

Alternatively, there is a renormalization scheme called differential renormalization
[16,25]. This works in configuration space and there is no need for a regularization procedure.

† E-mail address:dirk.prange@desy.de
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Differential renormalization has been shown to work to all orders by using Bogoliubov’s
recursion formula [21].

In this paper (following [23]) I show that the integral kernel representation of the Epstein–
Glaser subtraction exactly yields differential renormalization. It leads to a formula for the
computation of diagrams if all lower order contributions are known, as assumed in the causal
approach. Since the fomula turns out to become quite simple in the Euclidean case, I apply it to
lowest order examples from Euclidean scalar field theory and use the results for renormalization
group computations. In passing to higher orders one had to use a Euclidean version of the
causality axiom of CPT [27]. But this is beyond the scope of this paper.

CPT mainly relies on the principles of causality, translation invariance and the singularity
structure of the Feynman propagator. Brunetti and Fredenhagen [3] implemented CPT on
a globally hyperbolic spacetime by giving a local generalization of translation invariance.
Here the local causality structure is preserved and the Feynman propagator is known to have
Hadamard form. I show how the corresponding distributions can be renormalized in the
Euclidean case. This is achieved by an appropriate translation of their representations from
flat spacetime to curved spacetime.

2. The extension of distributions

Following [15, 27] it turns out that renormalization in CPT actually is an extension of
distributions from the subspace of test functions whose support does not contain the origin
to the space of all test functions. To treat the most general solution of that problem we are
concerned with the space of distributionsD′(Rn), the dual ofD(Rn), the space of test functions
with compact support. Letα = {α1, . . . , αn} ∈ Nn be a multi-index; we set|α| = ∑n

i=1 αi
andα! =∏n

i=1 αi ! and

∂α = ∂ |α|

∂x1
α1 . . . ∂xn

αn
(1)

is a partial differential operator of order|α|.
Remark. Note that all operations on distributions like differentiation and transformations of
their arguments are defined by the corresponding operations on test functions.

This fact is referred to as‘in the sense of distributions’. Writing

T (ϕ) =
∫

dnxT (x)ϕ(x) T ∈ D′(Rn) ϕ ∈ D(Rn) (2)

we callT (x) the integral kernel ofT . LetD(Rn \ {0}) = {ϕ ∈ D(Rn)|0 6∈ supp(ϕ)} denote
the subspace of test functions whose support does not contain the origin andD′(Rn \ {0}) its
dual†. Now we state the following problem.

Problem. Given a distribution 0T ∈ D′(Rn \ {0}), how can we construct an extension
T ∈ D′(Rn), such that0T (ϕ) = T (ϕ) for ϕ ∈ D(Rn \ {0})?

The solution of this problem requires the introduction of a quantity that measures the
singularity of the distribution at the origin [26].

Definition 1. A distributionT ∈ D′(Rn) has scaling degrees at x = 0, if

s = inf {s ′ ∈ R|λs ′T (λx) λ→0−→ 0 in the sense of distributions}. (3)

† The existence of the extension is guaranteed by the Hahn–Banach theorem. A solution for homogenous distributions
can be found in [19, ch III.2].
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Let s be denoted byscal deg(T ), and definesing ord(T ) := [s] − n, the singular order‡.

The definition also holds ifT ∈ D′(Rn \ {0}). We take theδ-distribution as an example

Example 1. For δ ∈ D′(Rn) one has:δ(λx) = |λ|−nδ(x). The scaling degree ofδ is n, the
singular order is zero.

The scaling degree of some special compositions of distributions can be computed quite
easily. We state the following proposition.

Proposition 1. LetT ∈ D′(Rn) or D′(Rn \ {0}), scal deg(T ) = s andβ be a multi-index.

(I ) scal deg(xβT ) = s − |β|.
(I I ) scal deg(∂βT ) = s + |β|.
(I II ) scal deg(w) 6 0 scal deg(wT ) 6 s w ∈ D(Rn).
(IV ) scal deg(T1⊗ T2) = s1 + s2 if scal deg(Ti) = si i = 1, 2.

The proof is skipped; we only note that all statements follow directly from the translation
of the words ‘in the sense of distributions’ and the use of the Banach–Steinhaus theorem
(principle of uniform boundedness, applied to distributions) on point (III ).

Example 2. The scaling degree ofδ(α) ∈ D′(Rn) is |α| + n. The singular order is|α|.
The solution of the problem depends on the sign of the singular order. Let us consider the

simple case first.

Theorem 2. Let 0T ∈ D′(Rn \ {0}) with scaling degrees < n. Then there exists a unique
T ∈ D′(Rn) with scaling degrees andT (ϕ) = 0T (ϕ) for all ϕ ∈ D(Rn \ {0}).

The proof can be found in [3]. If the scaling degree is not smaller than the space dimension,
the singular orderω is zero or positive. In that case theorem 2 guarantees a unique extension on
test functions that vanish at the origin up to orderω. Thus a general extension can be defined
after performing a projection into that subspace. This is achieved by a kind of modified Taylor
subtraction, called theW -operation.

W -operation. Let Dω(Rn) be the subspace of test functions vanishing up to orderω at 0.
Define

W(ω;w) : D(Rn) 7→ Dω(Rn) ϕ 7→ W(ω;w)ϕ

(W(ω;w)ϕ)(x) = ϕ(x)− w(x)
∑
|α|6ω

xα

α!

(
∂α
ϕ

w

)
(0) (4)

with w ∈ D(Rn) w(0) 6= 0.
The action ofW(ω;w) onϕ can be written as

(W(ω;w)ϕ)(x) =
∑
|β|=ω+1

xβϕβ(x) (5)

with ϕβ ∈ D(Rn). It has the nice property

W(ω;w)wϕ = wW(ω;1)ϕ. (6)

With (∂αxγ )(0) = γ !δγα it follows for |γ | 6 ω:

W(ω;w)wxγ = wW(ω;1)xγ ≡ 0. (7)

Now we can discuss the general case.

‡ [s] is the largest integer that is smaller than or equal tos.
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Theorem 3. Let 0T ∈ D′(Rn \ {0}) with scaling degrees > n. Givenw ∈ D(Rn) with
w(0) 6= 0, a multi-indexα, |α| 6 ω and constantsCα ∈ C, then there is exactly one distribution
T ′ ∈ D′(Rn) with scaling degrees and the following properties:

(I)
〈
T ′, ϕ

〉 = 〈 0T , ϕ
〉 ∀ϕ ∈ D(Rn \ {0})

(II)
〈
T ′, wxα

〉 = Cα.

T ′ is given by:〈
T ′, ϕ

〉 = 〈T ,W(ω;w)ϕ
〉
+
∑
|α|6ω

Cα

α!

(
∂α
ϕ

w

)
(0). (8)

HereT is the unique extension by theorem 2,W(ω;w) is given by (4) andω is the singular order
of 0T .

The proof can be found in [3]. We see that in the case of non-negative singular order, the
extension is not unique. It is fixed by a finite set of complex numbersCα. Let us look at the
next example.

Example 3. Thenth power of the scalar Feynman propagator(i1F)
n(x) = θ(x0)1+

n(x) +
θ(−x0)1+

n(−x) is a distribution onR4 \ {0}. We compute the scaling degree of1+
n.

1+
n(λx) = (2π)−3n

∫ n∏
i=1

d3pi

2ωpi
e
∑n

i=1(−iωpi λx
0+ipiλx)

= λ−2n(2π)−3n
∫ n∏

i=1

d3pi

2
√
(λm)2 + pi2

e
∑n

i=1(−i
√
(λm)2+pi2x0+ipix)

= λ−2n1+
n(x, λm)

λ→0−→ λ−2nD+
n(x).

HereD+ denotes the massless scalar two-point function. Hence the scaling degree is2n. The
application of theW -operation withω = 2n− 4 yields the extension to all test functions. The
computation can be done similarly for the Euclidean propagator.

We turn to another example that seems to have caused some confusion in classical physics
(see e.g. [14]).

Example 4 (The self energy of the electron).In electrostatics the electric potential of an
electron at the origin is given by the Green function of the Laplace equation in three dimensions.

1φ = −4πρ = 4πeδ ⇒ φ = −e
r
∈ D′(R3).

The electric field is

E = −∇φ = −er
r3
∈ D′(R3).

Sincesing supp(E) = {0} it follows:

E2 = e2

r4
∈ D′(R3 \ {0}).

The singular order is one. Hence there is an extension to all test functions by theW -operation.
We can define the energy densityU = E2 as the following distribution:

〈U, ϕ〉 := 〈E2,W(1;w)ϕ
〉
. (9)
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An electron at rest has self-energyE = 1/(4π) 〈U, 1〉. The choice ofϕ ≡ 1 is possible due to
sufficient convergence at long range. The same holds forw in (9).

E = 1

4π

〈
U,W(1;1)1

〉
+C0 = C0

as all Cα, |α| = 1 vanish. We can determineC0 by the requirement that the mass of the
electron is purely electromagnetic, i.e.

E = mc2.

In the following I will suppress the distinction between0T andT in the case that the
scaling degree is smaller than the space dimension. This should lead to no confusion since the
extension is unique in that case.

2.1. The integral kernel representation

Using standard vocabulary we call the extended distribution in theorem 3 arenormalization.
Next we will work out its integral kernel. If we set allCα to zero we have the following
definition.

Definition 2. Let T ∈ Dω′(Rn) with sing ord(T ) = ω. The integral kernelTR(ω;w) of its
extension is given by〈

TR(ω;w), ϕ
〉
:= 〈T ,W(ω;w)ϕ

〉
. (10)

Furthermore, we consider a family of distributionsTt that depend continuously on a real
parametert . If K is a real compact interval then

∫
K

dt 〈Tt , ϕ〉 exists as a Riemannian integral.
We define 〈∫

K

dt Tt , ϕ

〉
:=
∫
K

dt 〈Tt , ϕ〉 (11)

in the sense of distributions. Now we have the following proposition.

Proposition 4. The integral kernel(TR(ω;w)w) is given by:

(TR(ω;w)w)(x) = (−)ω+1(ω + 1)
∑
|β|=ω+1

∂β
xβ

β!

∫ 1

0
dt
(1− t)ω
tn+ω+1

T
(x
t

)
w
(x
t

)
. (12)

Proof. The Taylor expansion ofϕ at the origin is:

ϕ(x) =
ω∑
|α|=0

xα

α!
(∂αϕ)(0) + (ω + 1)

∑
|β|=ω+1

xβ

β!

∫ 1

0
dt (1− t)ω(∂βϕ)(tx). (13)

Hence(W(ω;1)ϕ)(x) is the Taylor rest term of orderω + 1. Writing (12) as(TR(ω;w)w) =∫ 1
0 dt (TR(ω;w)w)t we find using (11):〈∫ 1

0
dt (TR(ω;w)w)t , ϕ

〉
= (ω + 1)

∫ 1

0
dt (1− t)ω

∫
dnx

∑
|β|=ω+1

xβ

β!
T (x)w(x)(∂βϕ)(tx)

= 〈T ,wW(ω;1)ϕ
〉

= 〈T ,W(ω;w)wϕ
〉

= 〈TR(ω;w), wϕ〉
= 〈TR(ω;w)w, ϕ〉

where we used equation (6). �
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Note that the differential operator in (12) is aweak derivative. If w had no zeros
(⇒ w 6∈ D(Rn)), the integral kernel would result from a simple division. Later we encounter
a well known example of this.

To achieve a similar representation for the whole distribution we put a restriction on the
test functionw in (4). Letw(0) = 1 and(∂αw)(0) = 0, for |α| 6 ω.

Remark. This is no real loss of generality since for a givenv ∈ D(Rn), v(0) 6= 0, the
projection

v 7→ w = v
∑
|α|6ω

xα

α!

(
∂α

1

v

)
(0) ∈ D(Rn) (14)

yields (∂γw)(0) = δγ0 for |γ | 6 ω.

Then(1− w) vanishes up to orderω at 0:

W(ω;w)(1− w)ϕ = (1− w)ϕ (15)〈
(1− w)TR(ω;w), ϕ

〉 = 〈(1− w)T , ϕ〉 . (16)

Now the integral kernel is given by the following lemma.

Lemma 5. With the above restrictions onw ∈ D(Rn), the renormalized distributionTR(ω;w)
has the following integral kernel:

TR(ω;w)(x) = (−)ω(ω + 1)
∑
|β|=ω+1

∂β
xβ

β!

[
−
∫ 1

0
dt
(1− t)ω
tn+ω+1

T
(x
t

)
w
(x
t

)
+
∫ ∞

1
dt
(1− t)ω
tn+ω+1

T
(x
t

)
(1− w)

(x
t

) ]
. (17)

Proof. The first term of of (17) is the integral kernel ofwTR(ω;w). A simple computation shows
that the second term smeared withϕ yields〈T , (1− w)ϕ〉. Equation (16) completes the proof.
�

If n = 4m, we can write

k!
∑
|β|=k

∂β
xβ

β!
= \

( ∑
|β|=1

∂βxβ
)k
\ = \(∂µ1x

µ1 + · · · + ∂µmxµm)k\ (18)

with x =
 xµ1

...

xµm

 ∈ R4m.

Here\ . . . \ denotes the ordering of differential operators to the left of the coordinates.
To perform some computations with formula (17) it would be desirable to abandon the

requirement ofw being a test function. Letwm ∈ D(Rn) be a sequence with limm→∞wm =:
w ∈ D′(Rn). If lim m→∞

〈
TR(ω;wm), ϕ

〉 ∈ C exists∀ϕ ∈ D(Rn), we will allow w to be used
in the renormalization procedure. Let us considerT ∈ Dω ′(Rn) with singular orderω and
sing supp(T ) = {0}. Choosew(x) = θ(1/M − |x|) =: θ<(x),M ∈ R,M > 0, where| · |
denotes the Euclidean norm. Since sing supp(T ) ∩ sing supp(θ<) = ∅ andθ< has compact
support, the pointwise productθ<T ∈ Eω ′(Rn) ⊂ Dω ′(Rn) exists†.

† E = C∞ andE ′ is the space of distributions with compact support.
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Applying (17) yields

TR(ω;θ<)(x) = (−)ω(ω + 1)
∑
|β|=ω+1

∂β
xβ

β!

∫ M|x|

1
dt
(1− t)ω
tn+ω+1

T
(x
t

)
=: T MR (x). (19)

For an arbitrary choice ofw, a scaleM has to be introduced for dimensional reasons. This
allows writingw(Mx) as a function of a dimensionless argument. The dependence of the
counterterms on the scale can easily be computed:

M
∂

∂M

〈
TR(ω;w(Mx)), ϕ

〉 = ∑
|α|6ω

Bα
〈
δ(α), ϕ

〉
(20)

with Bα = (−)|α|+1

α!

〈
T ,Mxµ(∂µw)(Mx)x

α
〉
. (21)

Forw = θ< we get

Bα = (−)|α|
α!

〈
T , δ

(
1

M
− |x|

)
xα
〉
. (22)

2.2. Momentum space and BPHZ renormalization

Since the Fourier transformation is a mapD 7→ S we have to restrict our distributional space
to S ′ ⊂ D′‡.

We remind the reader that the Fourier transformation is defined in the sense of distributions,
i.e. T̂ (ϕ) := T (ϕ̂).

First we start with the definition of the moments of a test function:

Kα(ψ) :=
∫

dnx xαψ(x) ψ ∈ S(Rn). (23)

Let Sω(Rn) := {ψ ∈ S(Rn),Kα(ψ) = 0, |α| 6 ω} be the subspace of test function with
vanishing moments up to orderω, then it follows: ψ ∈ Sω ⇒ ψ̌ ∈ Sω. Choosingw as in
lemma 5 we have:

Kα(ŵ) = 0 for 0< |α| 6 ω K0(ŵ) = (2π)n (24)

and by a simple computation:

Kγ (∂αŵ) = (−)|γ |γ !δγα (2π)
n γ 6 α. (25)

The Fourier transformation ofWϕ is:

(W(ω;w)ϕ)∨(p) = ϕ̌(p)− 1

(2π)n
∑
|α|6ω

(−)|α|
α!

(ŵxα)(−p) 〈δ(α), ϕ〉 (26)

= ϕ̌(p)− 1

(2π)n
∑
|α|6ω

Kα(ϕ̌)

α!
(∂αŵ)(−p). (27)

Using (25) we get:

Kγ ((W(ω;w)ϕ)∨) = 0 |γ | 6 ω (28)

‡ LetS be the space ofC∞ functions of rapid decrease andS ′ its dual. We use the convention

ψ̂(p) =
∫

dnx ψ(x)eipx .
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soW(ω;w)∨ is actually a projectorS 7→ Sω. With〈
TR(ω;w), ϕ

〉 = 〈T̂R(ω;w), ϕ̌〉 = 〈T̂ , (W(ω;w)ϕ)∨
〉

(29)

the integral kernel is given by

T̂R(ω;w)(k) = T̂ (k)−
ω∑
|α|=0

kα

α!
(∂αT̂ w)(0). (30)

This subtraction should be understood in the sense of distributions, i.e. the subtraction on the
test functions has to occur before smearing out. It looks similar to BPHZ renormalization
which is a Taylor subtraction at arbitrary momentumq. We shall compute the corresponding
w. Let

T̂
q

R (k) := T̂ (k)−
ω∑
|α|=0

(k − q)α
α!

(∂αT̂ )(q) (31)

denote the BPHZ renormalized distribution in momentum space. Using the Taylor rest
expression similar to (13) and performing Fourier transformation we get:

T
q

R (x) = (−)ω+1(ω + 1)e−iqx
∑
|β|=ω+1

∂β
xβ

β!

∫ 1

0
dt
(1− t)ω
tn+ω+1

T
(x
t

)
ei qx

t (32)

and comparing with (12)

= TR(ω;eiqx ). (33)

Here, the equivalence of the subtraction procedure in Epstein–Glaser and BPHZ
renormalization can be seen explicitly.

3. Causal perturbation theory

In the following I give a very brief summary of CPT. A complete description can be found
in [13,24].

We start with theS-Matrix as a formal power series:

S(g) = 1 +
∞∑
n=1

(−i)n

n!

∫
d4x1 . . .d

4xn Tn(x1, . . . , xn)g(x1) . . . g(xn). (34)

It is an operator valued functional. The functiong ∈ D(R4) plays the role of a coupling
‘constant’. TheTn are operator-valued distributions in Fock space. They are called time-
ordered functions and involve free fields only. Epstein and Glaser stated six axioms from
which the time-ordered functions can be computed recursively. Here we cite only the most
important one called the causality axiom:

Tn(x1, . . . , xn) = Tk(x1, . . . , xk)Tn−k(xk+1, . . . , xn) (35)

if all points xk+1, . . . , xn are not in the causal past ofx1, . . . , xk. The inductive construction
starts withT1 = Lint. We assume thatTn′(x1, . . . , xn′) for all n′ < n exist as a sum of
products of a symmetric translation invariant numerical distribution and a Wick polynomial
of fields. The scaling degree of the numerical distribution is known at coincident points.
Now Tn can be constructed up to the total diagonalx1 = . . . = xn by the causality axiom.
Wick’s theorem ensures the required form. The numerical distributions have an extension
to the diagonal which is the origin inR4n−4 because of translation invariance. The Wick
polynomials are already defined as operator-valued distributions on the whole space. Let me
emphasize that the translation invariance of the numerical distributions plays a crucial role in
the whole construction.
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Figure 1. Feynman graphs corresponding to (40), (41).

4. Applications

I now give some examples fromφ4-theory in lowest order. The Lagrangian for the self-
interacting scalar field is

L(x) = 1

2
:∂µφ(x)∂

µφ(x) : −m
2

2
:φ2(x) : − λ

4!
:φ4(x) : . (36)

T1 is given by the interaction term:

T1(x) = − λ
4!

:φ4(x) : . (37)

Causality (35) impliesT2 for non-coincident points.

T2(x1, x2) =
{
T1(x1)T1(x2) if x0

1 > x0
2

T1(x2)T1(x1) if x0
2 > x0

1

= λ2

(4!)2
[:φ4(x1)φ

4(x2) : (38)

+ 16i1F(x1− x2) :φ3(x1)φ
3(x2) : (39)

+ 72(i1F)
2(x1− x2) :φ2(x1)φ

2(x2) : (40)

+ 96(i1F)
3(x1− x2) :φ(x1)φ(x2) : (41)

+ 24(i1F)
4(x1− x2)]. (42)

To give some explicit results for the numerical distributions we now turn to their
corresponding Euclidean counterparts. The singular support of these distributions is the origin
only. Hence we can use (19) for the renormalization.

4.1. The massless theory

The Green function of the Laplace equation in four dimensions is

DF(x) = 1

4π2

1

x2
. (43)

It has singular order−2. Consider the contribution to the two-point, respectively, four-point
vertex function.

4.1.1. The one-loop graph.The ‘fish’ graph (40) has singular order zero, so we get

DF
2|MR (x) =

1

(2π)4
1

2
∂µx

µ ln(M2x2)

(x2)2
. (44)

Since all extensions only differ by aδ-term we have

M
∂

∂M
DF

2|MR (x) =
1

8π2
δ(x) or ∂µ

xµ

(x2)2
= 2π2δ(x) (45)

by (22). This also could have been seen by expressingxµ

(x2)2
= − 1

2∂
µ 1
x2 , which is unique by

theorem 2.
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4.1.2. The two-loop graph. The singular order of the ‘setting sun’ (41) is two. Hence we
have

DF
3|MR (x) =

1

(2π)6
1

4
∂µ∂ν∂σ x

µxνxσ
1

(x2)3
[ln(M2x2) +M2x2 − 4M

√
x2 + 3]. (46)

Terms two, three and four have singular order 0, 1 and 2. As they are zero outside the origin,
they must be proportional toδ and its first, respectively second, derivatives. As there is no
Euclidean invariant combination of∂ andδ, term two has to be zero. Using (22) we get by
comparison withM ∂

∂M
on (46):

∂µ∂ν∂σ x
µxνxσ

1

(x2)3
= π2

2
1δ(x) (47)

∂µ∂ν∂σ x
µxνxσ

1

(x2)2
= 4π2δ(x) (48)

∂µ∂ν∂σ x
µxνxσ

1
√
x2

5
≡ 0 (49)

where1 is the Laplacian. Now we turn to the massive theory.

4.2. The massive theory

The Green function of the Euclidean Klein–Gordon equation is

1F(x) = 1

(2π)2
mK1(m

√
x2)√

x2
. (50)

AsK1(x) ∝ 1/x for x → 0, the singular order of1F = −2. We compute as follows.

4.2.1. The one-loop graph.With sing ord(1F
2) = 0 and (19) we get:

(1F
2)‖MR (x) =

1

32π4
∂µx

µ

{
m2

x2
[K1

2(m
√
x2)−K0(m

√
x2)K2(m

√
x2)]

−m
2

M2

1

(x2)2

[
K1

2
(m
M

)
−K0

(m
M

)
K2

(m
M

)]}
. (51)

By writing xµ . . . = ∂µ . . . which is unique we can express it as:

= m2

2(2π)4
1

{
K0

2(m
√
x2)−K1

2(m
√
x2) +

K0(m
√
x2)K1(m

√
x2)

m
√
x2

+
1

2M2x2

[
K1

2
(m
M

)
−K0

(m
M

)
K2

(m
M

) ]}
. (52)

This can be compared to the corresponding expression in [18].

4.2.2. The two-loop graph.Applying formula (19) leads to an integral
∫

ds (s−const)2K1
3(s)

that is difficult to solve. But if we use the expansion

m3K1
3(mr)

r3
= 1

r6
+

3m2

4r4

(
ln

(
m2r2

4

)
+ ln(γ 2)− 1

)
+R(r−2) (53)

we can renormalize the first and second summand with singular order 2, 0 respectively. With

ln
(
m2x2

4

)
(x2)2

∣∣∣∣M
R

= 1

4
∂µx

µ
ln
(
m4x2

16M2

)
ln(M2x2)

(x2)2
(54)
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and the previous results from section 3.1 we get:

(1F
3)
∣∣M
MR

(x) = 1

(2π)6

{
1

4
∂µ∂ν∂σ x

µxνxσ
1

(x2)3
[ln(M2x2) +M2x2 + 3]

+
3m2

16
∂µx

µ 1

(x2)2

[
ln

(
m4x2

16M2

)
+ 2 ln(γ 2)− 2

]
ln(M2x2) +R(x−2)

}
(55)

where the subscriptMR denotes the ‘minimal renormalization’, i.e. every summand is
renormalized with its singular order.

4.3. The renormalization group

The parameterM plays the role of a renormalization scale. It enters the theory by purely
dimensional reasons as an argument of the ‘function’w. We give the lowest-order contributions
to theβ, γ andγm functions in the renormalization group. They can be read off by solving
the renormalization group equation[

M
∂

∂M
+ β(g)

∂

∂g
+mγm(g)

∂

∂m
− nγ (g)

]
0n(x1, . . . , xn) = 0 (56)

to orderg2, whereg = λ/(16π2). Using the expansions

β(g,m,M) = M ∂g

∂M
=
∞∑
n=2

βng
n (57)

γm(g,m,M) = M∂ lnm

∂M
=
∞∑
n=2

γm,ng
n (58)

γ (g,m,M) = M

2

∂ lnZ

∂M
=
∞∑
n=2

γng
n (59)

we findβ2 = 3 andγ2 = 1
12 for the massless theory. Here we had to add a term to the setting

sun proportional to (48) to achieveγm ≡ 0.
In the massive theory we find

β2 = 3
m2

M2
K1

2
(m
M

)
(60)

henceβ2 → 3 if M → ∞. This result also holds for the corresponding minimal
renormalization. In that scheme we get

γ2 = 1
12 (61)

γm,2 = 2M2

3m2
+

1

2
ln

(
m2

4M2

)
+ ln(γ )− 5

12
(62)

by using (55).

4.4. Curved spacetime

LetM be a globally hyperbolic manifold with a metricg. Wick polynomials were defined
in [4] using techniques from microlocal analysis. Then CPT was implemented in [3] for scalar
φ4-theory. The Feynman propagator is known to have Hadamard structure [20]:

1F ∝ 1
1
2

2σ
+ v ln(2σ) +w (63)
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whereσ, 1, v,andw are smooth functions on the manifold and an appropriate iε regularization
has to be chosen. By using a chart it can be seen to have the same scaling degree as in flat
spacetime. The functionσ is half the square of the geodesic distance which is unique in every
sufficiently small neighbourhood. Letg = det(gab). The Van–Vleck–Morette determinant

1(p, p′) = − 1√
g(p) g(p′)

det(−σab′(p, p′)) p, p′ ∈M (64)

fulfils the following differential equation:

∇a(1σa) = 41. (65)

The vector index onσ denotes the covariant derivative as usual. If we expand

v =
∞∑
n=0

vnσ
n w =

∞∑
n=0

wnσ
n (66)

in powers ofσ , the coefficients (exceptw0) are determined by the Hadamard recursion relations,
see [7].

Following [3] the causal construction of the second-orderS-matrix is the same as in flat
spacetime. The only step left is to perform the extension to coincident points. Therefore
we turn to the corresponding Euclidean distributions, so we can transfer our results from the
previous examples†.

Differential renormalization in curved spacetime has already been used in [6]. But our
results may be compared with other renormalization techniques too [5,22]. Again we only use
the minimal renormalization scheme.

4.4.1. The one-loop graph.This is given by

1F
2|MMR =

1

16π4

(
1

(2σ)2

∣∣∣∣M
R

+ 2
1

1
2v ln(2σ)

2σ
+ 2

1
1
2w

2σ
+ 2vw ln(2σ) + v2 ln2(2σ) +w2

)
.

(67)

Only the first term needs renormalization and we get

1

(2σ)2

∣∣∣∣M
R

= 1

2
∇aσ a 1 ln(2M2σ)

(2σ)2
. (68)

4.4.2. The two-loop graph.Here we use the expansion (66) to determine the terms that have
to be renormalized. Then we are left with

1F
3|MMR =

1

(2π)6

(
1

3
2

(2σ)3

∣∣∣∣M
R

+ 3
1v0 ln(2σ)

(2σ)2

∣∣∣∣M
R

+ 3
1w0

(2σ)2

∣∣∣∣M
R

+ 3
1v̄ ln(2σ)

2σ

+3
1w̄

2σ
+ 3
1

1
2v2 ln2(2σ)

2σ
+ 6
1

1
2vw ln(2σ)

2σ
+ 3
1

1
2w2

2σ

+v3 ln3(2σ) + 3v2w ln2(2σ) + 2vw2 ln(σ ) +w3

)
(69)

with

v̄ = 1

2

∞∑
n=0

vn+1σ
n w̄ = 1

2

∞∑
n=0

wn+1σ
n. (70)

† For theσ calculus see e.g. [17]
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The first term is found to be

1
3
2

(2σ)3

∣∣∣∣∣
M

R

= 1

4
(∇a∇b∇c1 1

2 − 3∇a∇b1 1
2 ;c + 3∇a1 1

2 ;bc −1 1
2 ;abc)σ aσ bσ c

ln(2M2σ)

(2σ)3
. (71)

Similarly the second and third terms can be computed:

1v0 ln(2σ)

(2σ)2

∣∣∣∣M
R

= 1

4
(∇av0 − v0;a)σ a

1 ln(2M2σ) ln
(

2σ
M2

)
(2σ)2

(72)

1w0

(2σ)2

∣∣∣∣M
R

= 1

2
(∇aw0 − w0;a)σ a

1 ln(2M2σ)

(2σ)2
. (73)

Without further knowledge about the Feynman propagator, theβ-function can be evaluated
to lowest order, leading to the resultβ2 = 3 in this renormalization scheme. The calculation
requires the use of the identity∇a 1σa(2σ)2 = 2π2δ(p, p′).

5. Conclusions

The elegant method of CPT is not only suited for the investigation of renormalizability but
also for the performance of perturbative computations. The subtraction procedure on the
test functions can be pulled back to the distributions yielding differential renormalization.
Therefore it is possible to work in the standard integral kernel representation.

As the whole procedure is formulated in configuration space, it can be transferred
to distributions on a manifold. This enables one to give compact expressions for the
renormalization of quantum fields in curved spacetime, at least in the Euclidean case.
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[11] Dütsch M, Hurth T, Krahe F and Scharf G 1995 Causal construction of Yang-Mills theories. IIINuovo Cimento
A 108679–708
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