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Abstract. In the framework of causal perturbation theory by Epstein and Glaser the process of
renormalization is precisely equivalent to the extension of time-ordered distributions to coincident
points. Thisis achieved by amodified Taylor subtraction on the corresponding test functions. | show
that the pullback of this operation to the distributions yields expressions known from differential
renormalization. The subtraction is equivalent to BPHZ subtraction in momentum space. Some
examples from Euclidean scalar field theory in flat and curved spacetime will be presented.

1. Introduction

Calculations in perturbative QFT are performed primarily in momentum space. The
computation of a given contribution to ttfematrix is performed by writing down Feynman
rules and applying a certain choice of renormalization scheme to the resulting expression. For
areasonable renormalization scheme it should be proved to work for all orders and so produce
a finite S-matrix as, for example, in the case of BPHZ renormalization.

But today we consider the principle of locality to be of special importance, and hence
a local formulation of perturbation theory should exist. This has been elaborated upon by
Epstein and Glaser [13] following earlier ideas of Bogoliubov [2]. Their approach is called
causal perturbation theory (CPT). Based on a set of axioms they constructSehtagix
as a formal power series inductively. The process of renormalization occurs only once in
every step. All lower-order contributions are already renormalized. This corresponds to the
determination of all divergent subgraphs in the traditional approach and simplifies the proof
of the construction to all orders. The main concept on which CPT is based is its formulation
completely in configuration space. In the 1970s there were few applications of this, apart
from [1, 8]. This may be due to the fact that Epstein and Glaser used rigorous functional
analysis, in which renormalization is defined by an appropriate subtraction on test functions,
whereas physicists are used to working with distributions in an integral kernel representation.

Later, Scharfet al applied CPT to QED (see [24] and references therein) and to non-
Abelian gauge theories [9-12]. But their perturbative calculations were still performed in
momentum space.

Alternatively, there is a renormalization scheme called differential renormalization
[16,25]. This works in configuration space and there is no need for a regularization procedure.
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Differential renormalization has been shown to work to all orders by using Bogoliubov’s
recursion formula [21].

In this paper (following [23]) | show that the integral kernel representation of the Epstein—
Glaser subtraction exactly yields differential renormalization. It leads to a formula for the
computation of diagrams if all lower order contributions are known, as assumed in the causal
approach. Since the fomula turns out to become quite simple in the Euclidean case, | apply it to
lowest order examples from Euclidean scalar field theory and use the results for renormalization
group computations. In passing to higher orders one had to use a Euclidean version of the
causality axiom of CPT [27]. But this is beyond the scope of this paper.

CPT mainly relies on the principles of causality, translation invariance and the singularity
structure of the Feynman propagator. Brunetti and Fredenhagen [3] implemented CPT on
a globally hyperbolic spacetime by giving a local generalization of translation invariance.
Here the local causality structure is preserved and the Feynman propagator is known to have
Hadamard form. | show how the corresponding distributions can be renormalized in the
Euclidean case. This is achieved by an appropriate translation of their representations from
flat spacetime to curved spacetime.

2. The extension of distributions

Following [15, 27] it turns out that renormalization in CPT actually is an extension of
distributions from the subspace of test functions whose support does not contain the origin
to the space of all test functions. To treat the most general solution of that problem we are
concerned with the space of distributiddgR"), the dual ofD(R"), the space of test functions
with compact support. Let = {a, ..., a,} € N' be a multi-index; we setx| = >/, o;
anda! = []"_; o;! and
w glel
" = 0x1* ... 0x,* (1)

is a partial differential operator of ordgx|.

Remark. Note that all operations on distributions like differentiation and transformations of
their arguments are defined by the corresponding operations on test functions.

This fact is referred to a the sense of distributionsWriting

T(p) = /d”xT(X)w(X) T € D'(R") ¢ € DR") 2

we call T (x) the integral kernel of". LetD(R" \ {0}) = {¢ € D(R")|0 ¢ supf¢)} denote
the subspace of test functions whose support does not contain the origiri @td\ {0}) its
dualt. Now we state the following problem.

Problem. Given a distribution®7 e D'(R” \ {0}), how can we construct an extension
T e D'(R"), such that’T (¢) = T (¢) for ¢ € D(R" \ {0})?

The solution of this problem requires the introduction of a quantity that measures the
singularity of the distribution at the origin [26].

Definition 1. A distribution7 € D’(R") has scaling degree at x = 0, if
s =inf{s’ € R]A* T (Ax) 222 0iin the sense of distributiohs 3)

T The existence of the extension is guaranteed by the Hahn—Banach theorem. A solution for homogenous distributions
can be found in [19, ch 111.2].
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Lets be denoted bgcal degT'), and definesing ord T) := [s] — n, the singular ordet.
The definition also holds if' € D'(R" \ {0}). We take theé-distribution as an example

Example 1. For § € D'(R") one has:§(Ax) = |A|7"8(x). The scaling degree dfis n, the
singular order is zero.

The scaling degree of some special compositions of distributions can be computed quite
easily. We state the following proposition.

Proposition 1. LetT € D'(R") or D'(R" \ {0}), scaldedT") = s and 8 be a multi-index.
(I scaldegx?T) = s — |B].
(II) scalde@gd’T)=s+|B|.
(I1I) scaldegw) <0 scaldegwT) <s w € D(R").
(IV) scaldedTl; ® Tz) = s1 + 52 if scaldedT;) =s i=12
The proof is skipped; we only note that all statements follow directly from the translation

of the words ‘in the sense of distributions’ and the use of the Banach—Steinhaus theorem
(principle of uniform boundedness, applied to distributions) on pdihx

Example 2. The scaling degree 6f* € D'(R") is |a| + n. The singular order ige|.

The solution of the problem depends on the sign of the singular order. Let us consider the
simple case first.

Theorem 2. Let°T e D'(R" \ {0}) with scaling degre@ < n. Then there exists a unique
T e D'(R") with scaling degree and T (¢) = °T (¢) for all ¢ € D(R" \ {0}).

The proof can be foundin [3]. Ifthe scaling degree is not smaller than the space dimension,
the singular orde® is zero or positive. In that case theorem 2 guarantees a unique extension on
test functions that vanish at the origin up to orderThus a general extension can be defined
after performing a projection into that subspace. This is achieved by a kind of modified Taylor
subtraction, called th& -operation.

W-operation. Let D®(R") be the subspace of test functions vanishing up to ogdat 0.
Define

W(w;w) : D(R”) = Dw(Rn) @ = W(w;w)(p
X (ga ¥ 4
Wi #)() = 9 = w() 32 07 (%) @)

with w € D(R") w(0) # 0.
The action ofW,.,,) 0N can be written as

Wom@)(¥) = > xPepx) (5)
IBl=0+1
with ¢g € D(R™). It has the nice property
Wy we = wWe)e. (6)
With (8%x7)(0) = y!8Y it follows for |y| < w:
Wpmwx? = wWy,1x¥ = 0. (7

Now we can discuss the general case.

T [s]is the largest integer that is smaller than or equal.to
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Theorem 3. Let °T e D'(R" \ {0}) with scaling degrea > n. Givenw € D(R") with
w(0) # 0, amulti-indexy, |¢| < wand constant€* € C, thenthere is exactly one distribution
T' € D'(R") with scaling degree and the following properties:

() (T, ¢) = (°T.¢) Yo e DR\ (0}
(W) (1", wx®) = C=.

T’ is given by:

(1. 0) = (1. Wme)+ 3 - (2) ©. ®

o< ~°
HereT is the unique extension by theoreniiz,,.,, is given by (4) ana is the singular order
of °T.

The proof can be found in [3]. We see that in the case of hon-negative singular order, the
extension is not unique. It is fixed by a finite set of complex numig&rsLet us look at the
next example.

Example 3. Thenth power of the scalar Feynman propagai®n )" (x) = 6(x%) A" (x) +
6(—x% A" (—x) is a distribution onR* \ {0}. We compute the scaling degree/of".

n —3n - d3pi " (—iwy, AxO+ip; )
A+ ()\,)C) = (2]1) l_[ _eZ::1 'pi Di
i=1

zwpi

=12 27)" / ﬁ &°p; _ X (—in/ ()24 2xO+ipix)
iz1 2/ (Am)? + p;?

= A2 A (x, Am)
220 572D, (x).

Here D, denotes the massless scalar two-point function. Hence the scaling de@re€Tise
application of theW -operation withw = 2n — 4 yields the extension to all test functions. The
computation can be done similarly for the Euclidean propagator.

We turn to another example that seems to have caused some confusion in classical physics
(see e.g. [14)).

Example 4 (The self energy of the electron)in electrostatics the electric potential of an
electron atthe originis given by the Green function of the Laplace equation in three dimensions.

AP = —4rp = 4med = ¢ = _< € D'(R3).
r
The electric field is
E=-Vp=-2 e DR
r

Sincesing suppE) = {0} it follows:
62
E*= — € D'(R*\ {0)).
r

The singular order is one. Hence there is an extension to all test functions By-tigeration.
We can define the energy dendity= E? as the following distribution:

(U, ¢) = (E* Wr.up). 9)
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An electron at rest has self-ener@ly= 1/(4x) (U, 1). The choice of = 1is possible due to
sufficient convergence at long range. The same holds fior(9).

1
E = y (U, W)+ C°=C°

as all %, |a| = 1vanish. We can determing® by the requirement that the mass of the
electron is purely electromagnetic, i.e.

E = mc?.

In the following | will suppress the distinction betwe€fi and 7 in the case that the
scaling degree is smaller than the space dimension. This should lead to no confusion since the
extension is unique in that case.

2.1. The integral kernel representation

Using standard vocabulary we call the extended distribution in theorener®oamalization
Next we will work out its integral kernel. If we set afl“ to zero we have the following
definition.

Definition 2. Let T e D (R") with singord7) = . The integral kernellg(y;) Of its
extension is given by

(TR(a);w)7 §0> = (T’ W(w;w)‘p) . (10)

Furthermore, we consider a family of distributiofisthat depend continuously on a real
parameter. If K is a real compact interval thefy d (T;, ¢) exists as a Riemannian integral.

We define
</ drn,¢> = [ (11)
K K

in the sense of distributions. Now we have the following proposition.

Proposition 4. The integral kerne(Tg,:x)w) is given by:

(Trwmw) () = () L@+ D) Y 02 / T (7w (7): (12)

|Bl=w+1 t

Proof. The Taylor expansion af at the origin is:

w

g ol
p(x) = Z—(a“w)(0)+(w+1) > o /0 dr(L— (0 e)ax). (13)

lo|= 1Bl= o P
Hence(W,.1y¢)(x) is the Taylor rest term of ordes + 1. Writing (12) as(Tgw:umyw) =
4 dlf (T w); we find using (11):

1 1 P
< | dr(TR<w;w>w)f,<o> —@+d [(ara-n” [dr ¥ Dr@um @
0 0 IBl=w+1 *

(T wW,: 1)90)

= (T, Wiy we)

=

(TR(w w)yW, ‘P)

where we used equation (6). O
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Note that the differential operator in (12) isveeak derivative. If w had no zeros
(= w ¢ D(RM)), the integral kernel would result from a simple division. Later we encounter
a well known example of this.

To achieve a similar representation for the whole distribution we put a restriction on the
test functionw in (4). Letw(0) = 1 and(0*w)(0) = 0, for || < w.

Remark. This is no real loss of generality since for a givene D(R"), v(0) # 0O, the

projection

1
Vi w=1v Z (8“—) (0) e DR (14)
! v
\a\<w
yields (37w)(0) = &} for |yl<ow
Then(1 — w) vanishes up to ordes at O:
Wiwwy (1 —w)p = (1 —w)e (15)
(1= w) TRy, ) = (L= w)T, ¢). (16)
Now the integral kernel is given by the following lemma.

Lemma 5. With the above restrictions om € D(R"), the renormalized distributioffg ;)
has the following integral kernel:

B 1 _ 4\
P =0 3 o] = Lol (7)u )

|Bl=w+1
[ ()]

Proof. The firstterm of of (17) is the integral kernel®fz .., A simple computation shows
that the second term smeared wjtlgields (7, (1 — w)¢). Equation (16) completes the proof.
O

If n = 4m, we can write

k
k! Z aﬂx = < 3 aﬂxﬂ> g = §(B x4 - + 3, XY (18)
1Bl= 1Bl=1
xltl
with x=[ : | eR™.
x Mm

Heref ... denotes the ordering of differential operators to the left of the coordinates.

To perform some computations with formula (17) it would be desirable to abandon the
requirement ofv being a test function. Lab,, € D(R") be a sequence with lif., o w,, =:
w e D'R". IfliM o0 (Trwiw,. ¢) € C existsVp € DR"), we will allow w to be used
in the renormalization procedure. Let us consiflee D“’(R") with singular ordew and
sing supp?) = {0}. Choosew(x) = 6(1/M — |x|) =: 6=(x), M € R, M > 0, where| - |
denotes the Euclidean norm. Since sing SAPp sing supd =) = ¥ andd= has compact
support, the pointwise produét7 € £*'(R") C D (R") existst.

Tt €& =C* and¢’ is the space of distributions with compact support.
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Applying (17) yields

M|x| _ 4\
2 [ D ()
B! J1 prrerl t

Trwo (¥) = (—)°(@+1) Y 9

Bl=w+1
= T¥(x). (19)
For an arbitrary choice ob, a scaleM has to be introduced for dimensional reasons. This

allows writing w(Mx) as a function of a dimensionless argument. The dependence of the
counterterms on the scale can easily be computed:

0
M — (Trwx)- ) = Z B (8, ) (20)
oM la| <o
(—)lel*t
with B® = (T, Mx" (9, w)(Mx)x®). (21)
o!

Forw = 6= we get
el
BY = =) <T, 3 (i - |x|> x“>. (22)
o! M

2.2. Momentum space and BPHZ renormalization

Since the Fourier transformation is a map—> S we have to restrict our distributional space
toS' c D't

}Ne remind the reader that the Fourier transformation is defined in the sense of distributions,
i.e.T(p) = T(Q).

First we start with the definition of the moments of a test function:

Ke(y) = /d"x Xy (x) ¥ € SR). (23)

LetS,(R") = {¢ € S(R"), K*(¢) = 0, |a|] < w} be the supspace of test function with
vanishing moments up to order, then it follows: v € S® = ¢ € S,. Choosingw as in
lemma 5 we have:

K*Ww) =0 for 0<|o|<w K°() = (27)" (24)
and by a simple computation:
K7 (0*w) = (—)"y1s] (2m)" y <a. (25)

The Fourier transformation ¥ ¢ is:

Yl
Wern®’ ) = 60 — —— 3 O @mcp5@,9)  (26)
(2m) P !

. 1 K@) o~
= - %) (—p). 27
HP) = o %:w (0U0) (—p) (27)

Using (25) we get:

Ky((W(w;w)(p)v) =0 |7/| <w (28)

T LetS be the space af* functions of rapid decrease asdits dual. We use the convention

I = / d'x g (0P,
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S0 W:w " is actually a projecto§ +— S,,. With

(TR(w;w)v §0> = <m% ¢> = <f, (W(w;w)(p)v> (29)
the integral kernel is given by

J— N L
Trwuw®) =TK) = Y — (@ Tw)(0). (30)
=0 o
This subtraction should be understood in the sense of distributions, i.e. the subtraction on the
test functions has to occur before smearing out. It looks similar to BPHZ renormalization
which is a Taylor subtraction at arbitrary momentymWe shall compute the corresponding
w. Let
-4 _— 2 (k—q)* o
Tat) =Tk — Y ———0“T) (@) (31)
#1=0 o!
denote the BPHZ renormalized distribution in momentum space. Using the Taylor rest
expression similar to (13) and performing Fourier transformation we get:

. i B 1 1—1)® ar
T = ()" w+Dert Y o =9 T(%)e‘r (32)

1 n+w+l
gz B0t

and comparing with (12)
= TR(w;e)- (33)

Here, the equivalence of the subtraction procedure in Epstein—-Glaser and BPHZ
renormalization can be seen explicitly.

3. Causal perturbation theory

In the following | give a very brief summary of CPT. A complete description can be found
in [13,24].
We start with theS-Matrix as a formal power series:

S =1 +Z % / dxy .. d*%, T, (x1, .. x)8(x1) . . g(xn). (34)
n=1 )

It is an operator valued functional. The functigne D(R?*) plays the role of a coupling
‘constant’. TheT, are operator-valued distributions in Fock space. They are called time-
ordered functions and involve free fields only. Epstein and Glaser stated six axioms from
which the time-ordered functions can be computed recursively. Here we cite only the most
important one called the causality axiom:

Th(xy, .., %) = Te(xa, oo, X)) T (Xgrts - - -5 X)) (35)
if all points x;+1, ..., x, are not in the causal past &f, . .., x;. The inductive construction
starts withT; = L. We assume thaf, (x4, ..., x,) for all n’ < n exist as a sum of

products of a symmetric translation invariant numerical distribution and a Wick polynomial
of fields. The scaling degree of the numerical distribution is known at coincident points.
Now 7,, can be constructed up to the total diagogalk= ... = x, by the causality axiom.
Wick's theorem ensures the required form. The numerical distributions have an extension
to the diagonal which is the origin iR**~* because of translation invariance. The Wick
polynomials are already defined as operator-valued distributions on the whole space. Let me
emphasize that the translation invariance of the numerical distributions plays a crucial role in
the whole construction.
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N\

Figure 1. Feynman graphs corresponding to (40), (41).

4. Applications

I now give some examples from*-theory in lowest order. The Lagrangian for the self-
interacting scalar field is

1 2 A
L00) =3 19,9 (00" (x): —m? (P2 (x): ~ 2 A EDH (36)
T, is given by the interaction term:
A
Ti(x) = ~ 7 (). (37)
Causality (35) implieg for non-coincident points.
(> Ta(x2) if x> xJ
To(x, x2) = { T1(x2) Ty (x1) if x9 > x?
)\2
= @il ¢*(x1)9* (x2): (38)
+16iA p (x1 — x2) 1¢°(x1)$>(x2): (39)
+ 720 Ap)%(x1 — x2) 192 (x1)$?(x2) ! (40)
+96(1 A7) (x1 — x2) 1P (x1)p (x2): (41)
+24( A F)*(x1 — x2)]. (42)

To give some explicit results for the numerical distributions we now turn to their
corresponding Euclidean counterparts. The singular support of these distributions is the origin
only. Hence we can use (19) for the renormalization.

4.1. The massless theory

The Green function of the Laplace equation in four dimensions is
11

472 52

It has singular order-2. Consider the contribution to the two-point, respectively, four-point

vertex function.

Dr(x) = (43)

4.1.1. The one-loop graph.The ‘fish’ graph (40) has singular order zero, so we get
11 IN(M?x?)

Dp2M(x) = —= — 44
e (0 =5 a3 ey (44)
Since all extensions only differ by&aterm we have
0 1 H
M——Dp2M(x)= ——8(x)  of  8—ss = 27%8(x) (45)

oM 8r2 (x2)2
by (22). This also could have been seen by expresgihg= —39" 5, which is unique by
theorem 2.
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4.1.2. The two-loop graph. The singular order of the ‘setting sun’ (41) is two. Hence we
have

[IN(M%x2) + M%x% — AM~/x2 + 3]. (46)

1 1
DAY (x) = s 7000l x" ”( 73
Terms two, three and four have singular order 0, 1 and 2. As they are zero outside the origin,
they must be proportional tb and its first, respectively second, derivatives. As there is no
Euclidean invariant combination éfands, term two has to be zero. Using (22) we get by
comparison W|thM 57 0N (46):

2

H,V., O _ T[_
9,0,0,x"x"x 23 = 2 AS(x) 47
0,0y 05 x" x" X7 27 = 47°8(x) (48)
0,,0,0,x"x"x =0 49
M @5 ( )

whereA is the Laplacian. Now we turn to the massive theory.

4.2. The massive theory

The Green function of the Euclidean Klein—Gordon equation is

1 mKy(mv/x2 )
A 50
F(x) (2 )2 \/F ( )
As K3(x) o« 1/x for x — 0, the singular order ok = —2. We compute as follows.
4.2.1. The one-loop graph.With sing ord A %) = 0 and (19) we get:
2
(AP () = 32ﬂ4aﬂx“{m—2[1<12<m@> — Ko(mv/x2) Kp(m+/x2)]
X
m? 1 S/ m m
_W(xz)z [Kl (M) KO(M) KZ(M)H 1)
By writing x* ... = 3" ... which is unique we can express it as:
K (m\/F)Kl(m\/ﬁ)
Ko?(mv/x?) — K 2(mv/x2) + =2
2(2 ) { o> (mv/x?) 1°(mvx9) + e
1 o/ m m m
Yoz [Kl (37) %o (37) KZ(M)“' (52)

This can be compared to the corresponding expression in [18].

4.2.2. The two-loop graph. Applying formula (19) leads to anintegralds (s —consh?K,3(s)
that is difficult to solve. But if we use the expansion

m3K13(mr) 1 3m m?r? -
—s = E+F<m< 4 >+'n(y2)_l)+R(r 2 9

we can renormalize the first and second summand with singular order 2, 0 respectively. With

In <mzx2) Moo I (16M2)In(M2 2)

(x22 | B Zaﬂ (x2)?

(54)
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and the previous results from section 3.1 we get:

M 1 (1 b o 1
(AF3)|MR (X) = m{zauavagx”x X W[In(szz) + M2x2 + 3]
3m? 1 m4x? _
T a0 + 200 -2 mortsd ke 69

where the subscrippf/ R denotes the ‘minimal renormalization’, i.e. every summand is
renormalized with its singular order.

4.3. The renormalization group

The parameteM plays the role of a renormalization scale. It enters the theory by purely
dimensional reasons as an argument of the ‘functioriVe give the lowest-order contributions

to the 8, y andy, functions in the renormalization group. They can be read off by solving
the renormalization group equation

d 0 d
M_— + — m e Fn s ey An =0 56
[ AL ag Ty &) ny(g)} (x1 Xn) (56)
to orderg?, whereg = A /(16x?). Using the expansions
Blam M) = M5 Z3 g0 (57)
,m, = _— = n
§ IM n=2 §
dlnm i
m ’ 9 M = M = m.,n " 58
VYm(g,m, M) YT, n:ZV 8 (58)
MalnZ >
Jm, M) = — =3 " 59
yigm M) =5 === g (59)

N

n=

we find 8, = 3 andy, = liz for the massless theory. Here we had to add a term to the setting
sun proportional to (48) to achieyg, = 0.
In the massive theory we find

o= 300 K2 () (60)

henceg, — 3 if M — oo. This result also holds for the corresponding minimal
renormalization. In that scheme we get

y2=15 (61)
2M? 1 m?2 5
VYm2 = a2 + > In (m) +In(y) — 1 (62)
by using (55).

4.4. Curved spacetime

Let M be a globally hyperbolic manifold with a metric Wick polynomials were defined
in [4] using techniques from microlocal analysis. Then CPT was implemented in [3] for scalar
¢*-theory. The Feynman propagator is known to have Hadamard structure [20]:

1

A2
Ap x — +vIn(20) +w (63)
20
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wheres, A, v, andw are smooth functions onthe manifold and an appropréatgularization

has to be chosen. By using a chart it can be seen to have the same scaling degree as in flat
spacetime. The function is half the square of the geodesic distance which is unique in every
sufficiently small neighbourhood. Let= det(g,;). The Van—Vleck—Morette determinant

1
A(p, p') = ———=det(—ouy (p, p")) p.peM (64)
ve(p) g(p')
fulfils the following differential equation:
Vi(Ao?) = 4A. (65)
The vector index o denotes the covariant derivative as usual. If we expand
o0 o0
V= Z v,0" w = Z wy,o" (66)
n=0 n=0

in powers ot the coefficients (exceptp) are determined by the Hadamard recursion relations,
see [7].

Following [3] the causal construction of the second-orglenatrix is the same as in flat
spacetime. The only step left is to perform the extension to coincident points. Therefore
we turn to the corresponding Euclidean distributions, so we can transfer our results from the
previous examplest.

Differential renormalization in curved spacetime has already been used in [6]. But our
results may be compared with other renormalization techniques too [5,22]. Again we only use
the minimal renormalization scheme.

4.4.1. The one-loop graph.This is given by

1 A M AvInQe) _Aiw

AR M = +2 + 2vw In(20) + 12 In(20) + w? ) .
F i 16w4<(20)2R 20 2o Tavwin@e)+viin“(2o) +w
(67)
Only the first term needs renormalization and we get
A Mo Aln(2M?%0)
—| ==Vyoi'———. 68
202|, 27 T (20)2 (68)

4.4.2. The two-loop graph.Here we use the expansion (66) to determine the terms that have
to be renormalized. Then we are left with

NET 1 A3 M+3Av0|n(20) 3 A0
MR 2m)8 \ (20)3 |, (20)2 | (20)2
— 1 9,2 1 1 9
ﬂ +3A2v In“(20) +6A2vw In(20) +3A2w
20 20 20 20
+031n3(20) + 3v%w IN?(20) + 2vw?In(o) + w3> (69)

M M _
N AU In(20)

~J
R 20

+3

with
=23 e’ =2 wae” (70)
V= — Vp+10 w = = Wp+10 .
2 n=0 " 2 n=0 "

T For theo calculus see e.g. [17]
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The first term is found to be

3
Az 1 1 1 1 1 In(2M20)

——| =-=(V,V,V.A2 —3V,V,A2..+3V, A2, — A2.,p.)0° b _c 7
(20)3 . 4( b 2 pA2. 2., 2. pe)0c’o —(20)3 ( )

Similarly the second and third terms can be computed:

Awln2o) | 1 AIn@2M%0) In (%)

2oz |, ~ aVaro T o) 72
(20)2 |z 4( Vo = V0:0)0 (20)2 (72)

Aug [ 1 Aln@M%0)
= 3(Vawo = wo.)o" —5 57— 73
(20)2 R 2( Wo — Wo; )o (20)2 ( )

Without further knowledge about the Feynman propagatorgtfignction can be evaluated

to lowest order, leading to the resglf = 3 in this renormalization scheme. The calculation

requires the use of the identim% = 21°8(p, p').

5. Conclusions

The elegant method of CPT is not only suited for the investigation of renormalizability but
also for the performance of perturbative computations. The subtraction procedure on the
test functions can be pulled back to the distributions yielding differential renormalization.
Therefore it is possible to work in the standard integral kernel representation.

As the whole procedure is formulated in configuration space, it can be transferred
to distributions on a manifold. This enables one to give compact expressions for the
renormalization of quantum fields in curved spacetime, at least in the Euclidean case.
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